Writing and Low-Temperature Characterization of Oxide Nanostructures
نویسندگان
چکیده
Oxide nanoelectronics is a rapidly growing field which seeks to develop novel materials with multifunctional behavior at nanoscale dimensions. Oxide interfaces exhibit a wide range of properties that can be controlled include conduction, piezoelectric behavior, ferromagnetism, superconductivity and nonlinear optical properties. Recently, methods for controlling these properties at extreme nanoscale dimensions have been discovered and developed. Here are described explicit step-by-step procedures for creating LaAlO3/SrTiO3 nanostructures using a reversible conductive atomic force microscopy technique. The processing steps for creating electrical contacts to the LaAlO3/SrTiO3 interface are first described. Conductive nanostructures are created by applying voltages to a conductive atomic force microscope tip and locally switching the LaAlO3/SrTiO3 interface to a conductive state. A versatile nanolithography toolkit has been developed expressly for the purpose of controlling the atomic force microscope (AFM) tip path and voltage. Then, these nanostructures are placed in a cryostat and transport measurements are performed. The procedures described here should be useful to others wishing to conduct research in oxide nanoelectronics.
منابع مشابه
Synthesis and Characterization of ZnO Nanostructures Grown via a Novel Atmospheric Pressure Solution Evaporation Method
In this study, a novel method called “atmospheric pressure solution evaporation (APSE)” wasdeveloped for growing of Zinc Oxide (ZnO) nanostructures on Al2O3 surface. Zinc acetate dihydrate,Polyvinyl Pyrrolidone, and deionized water were used as precursor, capping, and solvent, respectively.The growth of ZnO nanostructures from evaporated solution was performed at three temperatures of300, 400, ...
متن کاملCuMn2O4 nanostructures: Facial synthesis, structural,magnetical, electrical characterization and activation energy calculation
The work is the report about stearic acid sol-gel synthesis method, magnetically, electricalcharacterization and activation energy of copper manganese oxide nanostructures. The CuMn2O4 nanostructures are synthesized at a temperature of 600°C using the sol-gel method. The structural analysis using X-ray diffraction (XRD) and Scherrer equation show that the crystallite size of CuMn2O4 is ab...
متن کاملSpinel-Type Cobalt Oxide (Co3O4) Nanoparticles from the mer- Co(NH3)3(NO2)3 Complex: Preparation, Characterization, and Study of Optical and Magnetic Properties
In this paper, the mer-Co(NH3)3(NO2)3 complex was used as a new precursor for synthesizing spinel-type cobalt oxide nanoparticles (Co3O4NPs).Thermal decomposition of the complex at low temperature (175 °C) resulted in the Co3O4NPs without using expensive and toxic solvents or complicated equipment. XRD, FT-IR, SEM, EDX, and TEM were employed to characterize the product, and its optical and magn...
متن کاملNiO Nanoparticles: Synthesis and Characterization
In the current paper,Nanostructured Nickel oxide (NiO) were synthesized by co-precipitation method using Nickel(II) Chloride Hexahydrate (NiCl2.6H2O) and sodium hydroxide (NaOH) as starting material. Structural, optical and magnetic properties of nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Atomic force microscope (AFM), UV–Vis absorption; Fo...
متن کاملZnO and CuO Nanostructures: Low Temperature Growth, Characterization, their Optoelectronic and Sensing Applications
__________________________________________________________________________________________________
متن کامل